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In recent study on design of experiments, the complicate metamodeling has been studied

because defining exact model using computer simulation is expensive and time consuming. Thus,

some designers often use approximate models, which express the relation between some inputs
and outputs. In this paper, we review and compare the complicate metamodels, which are

expressed by the interaction of various data through trying many physical experiments and

running a computer simulation. The prediction model in this paper employs interpolation

schemes known as ordinary kriging developed in the fields of spatial statistics and kriging in
Design and Analysis of Computer Experiments (DACE) model. We will focus on describing the

definitions, the prediction functions and the algorithms of two kriging methods, and assess the

error measures of those by using some validation methods.
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1. Introduction

Kriging is based on the field of geostatistics, for

example, hybrid discipline of mining engineer­
ing, geology, mathematics and statistics. The ap­

proach to prediction advocated in this paper has

been known as kriging after Dr. D. G. Krige's
work (1951) on the Rand gold deposit, in sout­

hern Africa. He developed an empirical method
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for determining a true ore grade distribution from

distributions based on sampled ore grade in the
1950's. Matheron (1963) developed this kriging

technique in France. This performed well in
predicting the value of a possible but actually not

taken observation of a spatially distributed vari­

able such as a mine grade (Krige, 1951), a soil
characteristic (Webster, 1985), rain fall (Bacchi

and Kottegota, 1995), gene frequency (Piazza, et

al., 1983), or image sequence coding (Deceneiere,

et al., 1998). There are other texts and papers that

describe kriging, the spatially correlated data
and the mining related with kriging (Volpi and

Gambolati, 1978; Gambolati and Galcati, 1985;

Kitanidis, 1983; Barendrengt, 1987; Cressie, 1991).

Kriging was also compared with splines in
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Dubrule (1983) and Sasena (1998). Recently,

kriging goes by a variety of names including

DACE model, which is the title of the inaugural
paper by Sacks, et al. (1989).

The kriging method is derived from geostatis­

tics and used for fitting the model of the

deterministic output as the realization of a ran­

dom process for efficient predicting. Since com­
puter experiments typically lack random error, an

appropriate method for approximating deter­

ministic computer experiments utilizes kriging,

which is also referred to as Design and Analysis

Computer Experiments (DACE) model. There

have been some studies for DACE modeling

methods at AIAA (American Institute of Aero­

nautics and Astronautics), in particular. Sacks,

et al. introduced firstly kriging as a tool of

interpolation of deterministic computer exper­

iments in 1989. Giunta (1997) and Giunta, et al.

(1998) performed a preliminary investigation

into the use of kriging for the multidisciplinary

design optimization of a high speed civil trans­

port aircraft. Sasena (1998) and Mardia, et al.

(1996) compared and contrasted kriging with

splines (nonparametric regression model). Boo­

ker (1996) and Booker, et al. (1996) used a

kriging approach to construct the approximate

model for the aeroelastic and dynamic response

of a helicopter rotor during structural design.

Simpson (1998) provided several kriging algo­

rithms and a source code in FORTRAN.

A kriging includes the mean of "optimal
predictor" or "optimally predicting," and this is

the very kriging interpolation method. The
predictor from an untried point in a region of

interest will be a linear combination of the

observations with positive or negative weights

plus departure, These methods provide not only a

best linear unbiased predictor, but also an esti­
mate of the variance of the predictor error. After

predicting, one can produce a map of this vari­

able, that is, contour plot, isopleth shaded area, or

graphical techniques for surfaces. Kriging method

is the only method with a sound statistical base,
which is to be applied when an uncertainty exists

and the variation is a function of the distance

between measurements.

A kriging requires understanding of the prin­

ciples of spatial autocorrelation and is used when

the variation of data is so irregular that simple

methods of interpolation may give unreliable

predictions. In general, the spatial structure of

stochastic dependence between outputs at differ­

ent tried inputs is represented by covariance,

semivariogram or the standardized measure of the

correlation coefficient. Semivariogram is the half

of variance of the difference between input data

and is usually used as a measure of association in

geostatistics. This is dependent only on the dis­
tance between the inputs, which is so-called

intrinsically stationary, and is efficiently used for

isotropic and ergodic data. Correlation function

in DACE model is defined that the component of
its matrix is the inverse of exponential function of

the distance between inputs product unknown

coefficient of correlation. This provides the best

predictor by using maximum likelihood estimator

(MLE) of the coefficient of correlation. One of

several theoretical semivariogram and correlation

function in respective kriging methods is built

with many ways which is chosen for building the

prediction model.
We will describe the definition, the prediction

function, and the algorithm of ordinary kriging.

Kriging in DACE model is described with the

same those of ordinary kriging. This model uses

several correlation functions, which are special

forms of the distance matrices. The difference

between ordinary kriging and DACE model is

described with data and the measure of associa­

tion. The method for assessing kriging model

accuracies is presented, and accuracy of two

kriging methods is compared using the validation

method with data from the computer simulation.

2. Ordinary kriging

There have been studies for several types of

kriging used in geostatistics such as ordinary
kriging (Matheron, 1962; Gandin, 1963), univer­

sal kriging (Goldberger, 1963; Matheron, 1963),

median polish (Cressie, 1986), etc. Ordinary

kriging is one of them and the basis of

geostatistics. Ordinary kriging gives the optimal



Kriging Interpolation Methods in Geostatistics and DA CE Model 621

ally stationary. Also, its predictor is assumed as
n n

p(z;x) = ~ A;Z(Xi) , ~ Ai= I, which guarantees
i=l i=l

an uniform unbiasedness. Denoting the generic

predictor of g (Z ( .» by p(z;g) for an unvisit­

ed sample point x, the optimal p(';x) will

minimize the mean-squared predictor error cr="
E (z(x) - p(z;X» 2 over the class of linear

n n
predictors ~ AiZ(xi) that satisfy ~ Ai= 1.

i=1 i==l

If two points are close together, their depen­

dency will typically be large. Otherwise, their

dependency will get smaller. In a given area,
semivariogram, between the values assumed by

the process Z (x) at two observed points XI and

X2, can be described by matrix form r (Xl, X2) =

1/2 Var[z(xI) -Z(X2)] =1/2E[{ Z(XI) -Z(X2)}

-{ m(xI) -m(x2)}]2. In this matrix form, the

m denotes the mean of the process. For more

detailed comparison between covariance and
semivariogram, one may refer to Cressie (1991).

For a given area, within which one needs to

understand the structure of the random process, it

is obviously impossible to know the true form of

association. Thus, the estimator of semivariogram

should be obtained using appropriate methods. In
the definition of semivariogram under the con­

stant-mean assumption, a natural estimator based

~ (Z(Xi) -Z(Xj))2 for hER, where
N(h)

{(Xi, Xj) ;Xi-Xj=h,

on the methods of moments, is 2f'(h) 1IN(h)!

N(h) ==
i, j=l, ... , n} and IN(h) I

2.1 Model construction
The random process Z = (Z(XI) , "', Z (Xn) ) "

which is n observed values at the known spatial
location {Xl, ... , Xn }EDCRd

, presents the reali­

zation of points in DcRd
. This is modeled as the

partial realization of the random process

predictions under the assumption that the process

is second-order stationary and is distributed with

normal, and that observed values are realization

of a stationary stochastic process of fairly simple

structure. This kriging model is the weighted

linear combination of the observation with white

noise process. Thus the optimal predictor will be

accepted by minimizing mean squared prediction

error. The observed values are first used to esti­

mate the unknown parameters of the process and

to compute empirical semivariogram. These ob­

served values, parameters and semivariogram are

used to produce the best linear unbiased predictor
of the unobserved point.

It refers to making inferences on unobserved
values of the random process Z ( .) given by

equation (I) from output Z. That is, a spatial

predicting is to predict unknown function

g({ Z(X); xED}) from n observed data in the
visited location XI, ... , Xn.

Ordinary kriging refers to a spatial prediction

under the following two assumptions. The model

is assumed as Z(X) =ti+o(x) for xED and
tiERand 0 (x) has zero mean and is intrinsic-

Table 1 Summary of theoretical semivariogram model

theoretical semivariogram model

Linear model

Spherical model

Exponential model
Gaussian model

{
A o8 (h) +Alh for h<a

Ao+Ala for h e a

{
Ao8 (h) +w/2[3h/a-(hla)3J for h<a

Ao+w for h e a
Ao8(h) +w[l-exp( -hia)]
Ao8(h) +w[l-exp(-hla)2]

8 (h) = I for h >0; 8 (h) =0 for h=O
Ao is nugget effect caused by possible errors of measurement,
Al is the rate of decrease of the spatial covariance in the field for the linear model,
Ao+w is sill, which is the variance of the field less the discontinuity Ao,
a is range, or the correlation distance, and is in practce the maximum distance for which observations are
correlated.
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(1~r-lr-.l)2

I~r-lln

3. DACE Model

n

~Ai=l
i=l

(4)

r - I l l'r-l r-1lA=r-I + n n r- n
r -l'r-I

n In

=r-I ( +1 l-l~r-lr)r n l~r lin

The spatial variable z(so) is distributed with

normal, and the prediction interval 100 (1- a) %
can be constructed.

In many computer experiments, the observation

is formulated for the response function imple­

menting a computer model with choosing various

input factors. For the given specific input x, one

can accept the response value for Yby solving the

differential equation computationally. Since the

equation solver is highly expensive and time

consuming, the response value y needs to be

estimated at the untried input points with solving

the relationship between some tried points and

response values through the reasonable number of

computation. In practical situation, many come

puter codes are deterministic and are not subject

to measurement error. Deterministic means that

the responses from computer code with same

inputs will be identical, and are different from the

random error derived from the case of physical

experiments.

where r= (rl. ... , rn), and ri is the semivario­

gram between the observed points and the

unobserved points, the value of In is the vector

whose elements are all ones, and r is
semivariogram matrix of the values z (x) at the

observed points.
This kriging coefficient vector computed from

Eq. (4) minimizes the mean squared estimator
error, or E(z(x) -Z(X))2. Minimum mean

squared estimator error is thus sometimes called
kriging variance (T, as

The kriging coefficients are determined through

equating matrix multiplication and summation

n-
~ Ajr(Xi-Xj) +J.t=Y(Xi-X), i=l, n
j=l

with respect to Ai, i = I, ... , n, and J.t, where J.t is
n

a Lagrange multiplier that ensures ~ Aj= 1. With
i=1

this condition, Eq. (2) becomes

is the number of the distance pairs in N(h)
(Matheron, 1962). From the analysis of the

empirical semivariogram, it is possible to for­

mulate the theoretical models suitable for re­

presenting the visited spatial variability by

determining the lag h. Some of the theoretical

semivariogram models of the homogeneous and

isotropic semivariogram, used in practice, are

shown in Table 1.

After estimating the semivariogram model,

structural analysis and interpolation for the

unobserved points in the interested region can be

provided because the semivariogram determines
the optimal weights for the interpolation.

- ~~ ,1;Aiy(xi-xi) +2 ~M(X-Xi) -2f..'(~Ai-I) (3)

where r(') is a semivariogram of the values

between the processes in the two observed points.

After differentiating Eq. (3) with respect to Ai,
i=l, ... , n, and J.t, and equating their result to

zero, the optimal parameters are obtained to sat­

isfy

2.2 Predicting the spatial distribution
If n observed values of the stochastic process

Z(Xi) are known at the given points Xl. i=l, ... ,
n, the predicted value Z (x) needs to be obta­

ined at the unobserved point X. For the kriging
coefficient Ai, i=l, ... , n, linear combination
_ n

Z (x) =~ A;Z(Xi) is the optimal estimate when
i=1

two conditions of unbiasedness and minimum
variance are satisfied. The estimator with these

conditions is called BLUP (Best Unbiased Linear
Predictor). The unbiasedness condition gives

E[Z(x)] =E[~ A;Z(Xi) J=~ A£[Z(Xi)] =
n
~ Aim=m, where m is constant mean. We can
;:'1

then minimize

E(Z(x) -it A;Z(Xj) )2_2J.t( it ~-I) (2)
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Table 2 Summary of Correlation Functions

Correlation Function

Exponential
Gaussian

Cubic spline

Matern linear function
Matern cubic function

IH=1 exp (- 8k Id, j)
n~=l exp(- 8kl d, 1

2
)

{

1-6 (8k1d; j)2+6( 8k Idk j)3 8k1dk 1< 1/2}
n~=l 2(I-(8kldk j)3) 1/2S;;8k l dkl<1

o 8k I d; 121
n~=l [(I +8k Id, j) exp( - 8k Idk j) ]
n~=l [(I + 8k1d, 1+8: 1d: 1/3)exp( - 8k Idk j) ]

d is the number of design variable,
8k is the unknown vector of correlation parameters used to be fitted this kriging model,
d, is the distance between any two sample points Xk

i and x/ of the k th components.

Cov[Z(x i
) , Z(x')] =rfR[R(x i

, xj
) ] ,

i, j=l, "', n

3.1 Model construction
Kriging in DACE model is formulated as the

Eq. (5) that is a combination of a linear re­

gression model and departure.

where y (x) is the unknown function of interest,

I (x) is a known linear function of input x and

Z (x) is the realization of stochastic process with
zero mean, rr variance, and nonzero covariance.

Also, f3 is the unknown vector that should be

estimated from n observed response values from

the properties of kriging interpolation in the
DACE model. In Eq. (5), f31(x) provides a

global model in design space, which is similar to

the polynomial type response surface model. It is
noted that Z (x) creates a localized deviation

between the global model and the exact model.

Therefore, kriging model can successfully

interpolate the n sampled data points. The
covariance matrix of Z (x) is expressed as

(7)

Another term of interest is the correlation
vector, r (x), between the response values at the

observed points Xi, "', x" and the response at a

given location x that requires an estimation. This

correlation vector can be expressed as

Several correlation functions are listed in Table

2. Sacks et al (1989) proposed the exponential

and the Gaussian functions. Mitchell and Morris

(1992) used the three correlation functions such

as a cubic spline, a matern linear and a matern

cubic correlation. In this study, a unique evalue
for each dimension is considered based on past

difficulties with scaling the design space to [0, 1]d

during the model fitting process. Although this

study uses a unique evalue for each dimension, it
is worth noting that using a single correlation

parameter gives sufficiently good results in some

cases (Booker, et aI., 1995; Osio and Amon,
1996). The exponential correlation function, used

in this study, is rewritten as

R(x i
, x') =exp[-el;ll d« IJ (6)

(5)y(x) =f3I(x) +Z(x)

where R is a correlation matrix and R(Xi,~) IS

a correlation function between any two points Xi
and x j in the n sampled points. R is an (n X n)
symmetric and positive definite matrix of which
diagonal elements are one values. The correlation
function R (Xi,~) can be specified to reflect the

association effectively among the sampled points.
For a smooth response value, a correlation func­

tion with some derivatives would be preferred,

whereas an irregular response might call for a
correlation function with no derivatives.

3.2 Kriging prediction
When the symbol y(x) is the estimated DACE

model for the unknown function y (x) in Eq. (5),

this estimate can be defi~ed from the statistical
notation as y(x) = E[y (x) Iy (Xl), "', y (x n) ],

where the terms y (xl), "', y (x") are the observed

response values of the n sampled points. Also,
y (x) is the true function of untried input x and

y(x) is the actual estimate of x to be expected to

close to real y (x) .
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F']-I[f (x) ])
R r(x)

Considering the linear predictor y(x) =c'(x)
Yx of y (x) at an untried x, we can conceptually
replace y (x) by the corresponding random
quantity Yx={ Y (x'), ... , Y (x n)} in order to

treat y(x) as random, and compute the mean
squared error of this predictor averaged over the

random process. For the random quantities, the
best linear unbiased predictor (BLUP) is obta­
ined by choosing the n X 1 vector c(x) to
minimize mean squared error (MSE), MSE
[y(x) J=E[c'(x) Yx- Y(x) J2 while satisfying

the unbiasedness constraint E[c'(x) YxJ =
E[ Y(x)]. In order to give some technical details
connected with implementing the BLUP of the
response at an untried input, the notation f (x) =
[II (x), "', fd (x) J' can be introduced for the d
functions in the regression such as

smoothing surface of the residuals. Therefore, the
DACE can be interpreted as two stages; fit and
then interpolate the residuals as if there were no

regression model.
A convenient representation for the MSE

[y(x) J is obtained by substituting Eq. (9) in Eq.
(8) togive

MSE[y(x) J

=If( 1- [I' (x), r'(x) J[;

Assuming the Gaussian process, the likelihood
is a function of the /3's in the regression model,
the process variance If and the correlation
parameters. Given the correlation parameters, the
estimate of the /3's is the generalized least squared
estimate, and MLE of cf is

(8)

4. Spatial Design and DACE Model

oz=l(yx-F!3)'R-I (Yx- FlJ) (11)
n

With the definitions of 13 and rr, the problem
can be simplified to maximize

(12)
I

tP (8) = - (det R) nrr

In the ordinary kriging, the random process
is often modeled by using the semivariogram

1r(XI, X2) =2Var[Z(xI) -Z(X2) J rather than

the covariance function. Thus, the ordinary
kriging requires the theoretical semivariogram
for prediction of the spatial process at the
unobserved locations. Hence, it is necessary to
decide on a theoretical semivariogram based on
the sample semivariogram. While there are several
methods of fitting semivariogram models such as
the least squares, the maximum likelihood and the
robust methods (Cressie, 1991), it seems that
these methods are not appropriate for data sets

This is the function of only the correlation
parameter and the data. Any value for the un­
known parameter 8 in Eq. (6) creates an inter­
polative approximation model. However, the best
kriging model can be obtained by solving the
unconstrained nonlinear optimization problem of
the Eq. (12) with respect to the value of 8.

y(x) =f'(x) !3+r'(x) R-1
( Yx-F!3) (10)

where 13= (F'R-IF) -IF'R-I Yx is the usual

generalized least squared estimate of /3. In Eq.
(10), two terms on the right side are uncorrelated,
and the second term can be interpreted as a

where F is the n X d expanded design matrix.
Also, R ={ R (Xi, xi) I 1::::;; i, j::::;; n} becomes the

n X n matrix of stochastic-process correlations,
and rl.x) is the vector of correlations with this
definition. Then, MSE of y(x) becomes

E[c'(x) Yx- Y(x) J2

[ R r (Ix)] [C_(x
l
) ]=!f[c'(x), -lJ r'(x)

( 0 F')( -A(X) )=(f(X)) (9)
F R c(x) r(x)

Typically, an unbiased requirement leads to the
constraints F'c(x) =f (x): The BLUP of Y (x)
is obtained by minimizing MSE[y(x) J subject
to F'c(x) = f (x). Using Lagrange multiplier for
the constrained minimization of the MSE prod­
uces Rc(x) =FA(X) +r(x) and the coefficient
c(x) of the BLUP must satisfy

The BLUP can be obtained by inverting the
partitioned matrix as
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5. Validating a Kriging Model

Table 3 Error Measures for assessing kriging model
accuracy

geostatistical models used often in corporate a

so-called nugget effect, or micro-scaled varia­

tions, which is caused by a discontinuity at the

origin of the plot of semivariogram vs. lag. The

only possible reason for nugget effect is measure­

ment error. This occurs when a measurement is

taken several times (duplicate) and different

results are obtained.

The DACE model describes that correlation

function of the form R (Xi, x') =II exp ( - e
Ixi-x j IP) with O<p~ 1 may be useful for

modeling such the computational experiments
that have high dimension inputs and deterministic

results. The DACE model can also be extended to

settings where systematic and random errors are

both important and should be useful for physical

experiments.

Since kriging model interpolates the data,

residual plots and R2 statistic, which are the usual

model assessments for response surface, are

meaningless for DACE model (Myers and
Mongomery, 1995; Simpson, 1998). Therefore, the

additional validation points are needed to
validate kriging model. If additional validated

points can be afforded, the maximum absolute

error, average absolute error and root mean
squared error for these points can be calculated to

assess model accuracy. These measurements are

shown in Table 3 where the above three measures

for model assessment methods are named by
abbreviated words of Maxerr, Aveerr and Rtmse,

respectively. The values of n, Yi and Yi denote the
number of the untried points used to test, the real

values from input and the predicted value from

the kriging model, respectively.

Error Measure

Max. I Yi-Yi 1 i=l, ... , n

l~7=11 Yi-Yi In
---,----,--
! ~7=11 Yi-Yi 1

2

V n
Rtmse

Avgerr

Maxerr

resulting in a small number of semivariogram

points. Instead, a visual fit of the semivariogram

point to a few standard models is widely used.

Even when there are sufficient semivariogram

points, a visual check against a fitted theoretical

model is more appropriate. After a suitable theo­

retical model is determined with the number of
lags, the experimental semivariogram is comput­

ed. A suitable theoretical model is thus found
visually and one can perform ordinary kriging

using semivariogram. Although this visual fit

gives more accurate model, it prevents the ordi­

nary kriging from being automated because an

experienced human interaction is required during

its statistical process.

For DACE modeling, the correlation parame­

ters OJ in Table 2 are estimated by MLE. The

MLE, based on the underlying Gaussian process

model, is a form of cross-validation in which
subsets of data are used to predict the remaining

data. The correlation parameters can be numeric­

ally chosen to minimize a summary measure of

errors from these predictions. Ripley (1988)

discussed problems with optimizing likelihood

to estimate correlation parameters. Other appro­
aches besides MLE are discussed in Besac (1997),

Currin, et al. (1988), and Torczon (1998).

The difference between the ordinary kriging

and the DACE model is as follows; first, ordinary

kriging is used for random data with the mea­
surement error, while data in DACE model is

deterministic. Second, the measures of the correla­

tion of both models are the semivariogram in

ordinary kriging and the correlation function in
DACE model, respectively. Nugget, sill and range

are used in determining semivariogram and the

value of 0 is directly used as the coefficient of

correlation function in DACE model.

As the ordinary kriging has usually treated
only two and three-dimensional space In

geostatistical situation, it is not obvious that the

methods of estimating semivariogram well extend

from the low dimensional spatial coordinate to
the high dimensional inputs of computer

experiments. These data, sometimes appear to

have measurement error or may be more erratic

than response from computer codes. Hence, the
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6. Numerical Studies

In order to compare the accuracy of both
kriging models, two test functions are estimated
such as bird function and Rosenbrock's function
using computer simulation. For these test func­

tions, the number of design variable d=2 and
inputs are sampled at equally spaced locations by
n=7X7=49, n=lOXlO=IOO, n=14X14=196
and n=20 X20=400 sample points on the given
area. To assess these kriging model accuracies,
each test function is sampled at n=30 X30=900
equally spaced points on the given area. In the
problem of design of experiment for building
kriging model, "space filling" experimental design
with no blocking, replication and randomization
may be better suited for computer experiments. In
this example, we use equally spaced sampling
method, but several other unequal spacing exper­
imental designs exist (Myers and Mongomery,
1995). Simpson (1998) summarized a wide varie­
ty of design including the Latin hypercubes, the
minimax/maximin designs and orthogonal arrays,
etc. The predicted models with 49, 100, 196, 400

sampled points and exact model (constructed by
900 sample points) are plotted for each test func­

tion, respectively.
In this study, the algorithms for ordinary

kriging and DACE model are coded with S-plus
2000. In order to fit kriging in DACE model,
the initial design sample are scaled to [0, 1]2.
With the given inputs and responses, three semi­
variogram parameters are accepted for ordinary
kriging predictor and the coefficient of correla­

tion is also accepted for DACE model predictor
of each test function. In ordinary kriging, sill,
range and nugget are firstly chosen from the plot
of semivariogram vs. lag for formulating the the­
oretical model as described previonsly. We then
fit a theoretical semivariogram model to an

empirical one. In the case of ordinary kriging, the
theoretical exponential model with 20 lags is
employed in these two test functions. The number
of lags can be subjectively determined by the
user at the design space and we use 20 lags that
is the default in S'-plus SPATIALSTATS (1996).
Finally, we determine the exponential model as
an appropriate semivariogram model from the
plot of semivariogram vs. lag.

Table 4 Bird function; Error measures of ordinary kriging and DACE model

Number of Sampling Points
Error 49 100 196 400

Maxer 3.657747 2.358567 2.542853 2.130335
Ordinary kriging Aveerr 0.406870 0.321746 0.287571 0.265200

Rtmse 0.687343 0.549449 0.495159 0.461488

Maser 3.266171 2.519098 2.477272 1.423881
DACE model Aveerr 0.411055 0.280579 0.165186 0.081779

Rtmse 0.682882 0.504521 0.336560 0.197590

Maxerr=maximum absolute error; Aveerr=average absolute error; Rtmese=root mean squared error

Table 5 Rosenbrock's valley function; Error measures of ordinary kriging and DACE model

Number of Sampling Points
Error 49 100 196 400

Maxerr 1310.936 1849.761 1521.834 1369.704
Ordinary kriging Aveerr 221.6596 199.9768 153.6563 152.1085

Rtmse 338.1948 336.4224 275.2284 273.6638

Maxerr 573.0329 295.7348 192.5026 106.6619
DACE model Aveerr 123.9449 48.48755 20.78803 8.652694

Rtmse 193.5972 85.09829 40.45158 18.71458

Maxerr=maximum absolute error; Aveerr=average absolute error; Rtmese=root mean squared error
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After predicting empirical semivariogram,

kriging predictions at a set of unobserved spatial

locations are computed using weights and plotted
on three-dimensional space. In DACE model, we

use the exponential model in Table 2. It is most
suitable for estimating the smooth surface (Sacks

et al., 1989) unlike that of semivariogram. The

scalar coefficient of correlation 8 in Eq. (6) is

estimated from a one-dimensional analytic func­

tion maximizing ¢(8) in Eq. (12). In fact, the

accuracy of kriging model largely depends on the

value of 8 and the determination of 8 requires

another optimization process. The golden section

refinement is used in this study to solve it. After
computing correlation matrix with 8, kriging

predictions at untried inputs are predicted and

plotted as in the case of ordinary kriging. Once

two kriging models are created, their model accu­

racies are assessed using three error measures in

Table 3. The results of validating error of these

two kriging methods are summarized in Tables 4

and 5.

6.1 Bird function
The following function IS named as "bird"

Fig. 1 Exact bird function

l

(a) (b)

(c) (d)

Fig.2 Approximate bird function using ordinary kriging with (a) 49, (b) 100, (c) 196 and (d) 400 equally

space sample points, respectively
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Fig. 3

(c)

Approximate bird function using DACE model with (a) 49, (b)
sample points, respectively

(d)

100, (c) 196and (d) 400 equally space

function because its surface feature is similar to

bird as shown in Fig. I and the analytical form of

the bird function is given by

-4~Xi~4, i=l, 2

Figure I shows exact model of this bird func­
tion sampled at 30 X 30=900 equally spaced sam­

ple points on [-4, 4]2. To predict the response

vales at these sites, ordinary kriging and DACE

model are built with equally spaced 49, 100, 196

and 400 sample points as in Fig. 2 and Fig. 3,

respectively. Considering the overall model con­
struction, semivariogram parameters are accepted

from 900 equally spaced untried sample points.

Here, siII= 1.0, range= 1.4 and nugget=0.2 are

selected from the visual fittings. For DACE

model, each optimal coefficient of correlation is

determined as 8=0.96, 8= 1.32,8= 1.30 and 8=
0.56 for the same inputs in semivariogram, re­

spectively. The results for validating ordinary

kriging and DACE model are listed in Table 4,

where maximum absolute error with 100 sample

points in ordinary kriging is better than DACE

model. In the different cases, the error measures of

DACE model are better than ordinary kriging.

Thus, if the number of sampled points is

increased, the accuracy of the model in the region

of interest is greatly improved.

6.2 Rosenbrock's valley function
As a second example of kriging method,

kriging prediction of Rosenbrock's valley func­

tion is considered

/(Xl, xz) =100(XZ-X1Z)Z+(I-xl)Z,

-2.5~Xi~2.5, i=l, 2
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Fig. 4 Exact Rosenbrock's valley function

Figure 4 shows exact model of this function

sampled at 30 X 30 equally spaced sample points

on [ -2.5,2.5]2. With equally spaced 49, 100, 196

and 400 sample points, two kriging models in

Figs. 5 and 6 are constructed and semivariogram

parameters are accepted from the 30 X 30=900

., .,

sample points for this function as in the case of

bird function. With, sill=4e6, range=6 and

nugget= le4. For DACE model, each optimal

correlation parameter is determined as 8=0.06,

8=0.03, 8=0.0002 and 8=0.0002 for these sam­
ple points, respectively. Because the correlation

matrix R in equation (6) is poorly conditioned,

the small values of 8 are estimated. Sacks, et al.

(1989) stated the computation of D-optimal or

other efficient design for experiments would share

this difficulty. The results for validating ordinary

kriging and DACE model are in Table 5. For this

case, the error measures of DACE model are

better than ordinary kriging as shown in Table 3.

Although maximum absolute error in 7 X 7 sam­

ple points is smaller than that in the different

number of sample points, the accuracy of the

model in the region of interest is greatly improved

when the number of sample points is increased.

I

(a)

.,

(b)

-e :1

(~ (~

Fig. 5 Approximate Rosenbrock's valley function using ordinary kriging with (a) 49, (b) 100, (c) 196 and (d)
400 equally space sample points, respectively
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Fig. 6 Approximate Rosenbrock's valley function using DACE model with (a) 49, (b) 100, (c) 196 and (d)
400 equally space sample points, respectively

7. Summary

In this 'work, we presented the difference be­

tween semivariogram in ordinary kriging and

correlation function form in DACE model. Ordi­
nary kriging was used for random data with the

measurement error, while data in DACE model

was deterministic. Nugget, sill and range were

used in determining empirical semivariogram and
correlation coefficient e was used in DACE

model. In numerical studies, we used bird and

rosenbrock's functions with equally spaced sam­
ple points. The accuracy of these two kriging

models was evaluated through examination of

two test functions. The results showed that DACE

model was more accurate than ordinary kriging.

We speculated that these results were obtained
from the visual investigation of the empirical

semivariogram and from the deterministic data of

the computer simulation suitable for DACE

model. We also found that the accuracy of the
model in the region of interest was greatly

improved if the number of input points was

increased.

Finally, it is noted that kriging can be used for
prediction, approximation, interpolation, or

smoothing. We show that kriging can be used in

prediction process. Future work will be included

for design problem with more design variable,

other sampling technique, and global optimiza­

tion problem.
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